Vertebrate brain theory

ISBN 978-3-00-064888-5

Monograph of Dr. rer. nat. Andreas Heinrich Malczan

11. List of figures

Figure 1 - Simple rope ladder nervous system without mean centres    38
Figure 2 - Spatial arrangement of neuron classes    44
Figure 3 - Statocyste (active principle)    52
Figure 4 - Vestibular-triggered correction movements    53
Figure 5 - Basic structures of the rope ladder nervous system    57
Figure 6 - Body and neural tube - imaging topology    67
Figure 7 - Topology in the neural tube - segment rings and modality rings    69
Figure 8 - Visual imaging of the retina in the optic tectum    76
Figure 9 - Principle of signal crossing on the crossing floor    80
Figure 10 - Splitting the rope ladder system into modality ladders    86
Figure 11- Arrangement of neuron classes in the neural tube    91
Figure 12 - Neural excitation of the minimum coded vestibular sense    112
Figure 13- Inverted output of the neovestibular sense -maximum coded    113
Figure 14 - Original nucleus olivaris    137
Figure 15 - Climbing fiber signal generated in the striosome system    141
Figure 16 - Dopaminergic and GABAergic Projection in the Basal Ganglion System    142
Figure 17 - Cluster group in the cortex    159
Figure 18 - Individual clusters in the cortex - schematic representation    160
Figure 19 - Echo generation on delay lines in the hippocampus    180
Figure 20 - Hippocampus basic circuit as echo generator    181
Figure 21 - The hippocampal theta    182
Figure 22 - The formation of signal divergence in the nucleus olivaris    206
Figure 23 - Divergence grid in the nucleus olivaris - schematic diagram    207
Figure 24 - The nucleus olivaris and its structure    210
Figure 25 - Signal divergence in the nucleus olivaris and cerebellum    212
Figure 26 - Divergence and convergence in the vertebrate brain    215
Figure 27 - Cable equation for non-markless axons    217
Figure 28 - Fire rate for signal propagation on non-markless axons    218
Figure 29 - Divergence grid in the nucleus olivaris - schematic diagram    219
Figure 30 - Divergence Grid - Derivation of the Fire Rate    220
Figure 31 - Linear and plane divergence grid in the olivaric nucleus    225
Figure 32 - Divergence Grid and Signal Inversion    227
Figure 33 - Inverted output of a divergence grating    228
Figure 34 - Output Divergence Grid after Extreme Value Selection    229
Figure 35 - Convergence Grid - Block Diagram    231
Figure 36 - Convergence Grid - Derivation of the Fire Rate    232
Figure 37 - Signal divergence in the nucleus olivaris    239
Figure 38 - Signal Divergence and Convergence in the Pontocerebellum    241
Figure 39- The inhibition of the olive by the neurons of the nucleus dentatus    245
Figure 40 - Splitting the Neural Tube    250
Figure 41 - The Frontalcortex as a New Turning Structure and Convergence System    257
Figure 42 - DVR as Convergence Grid    262
Figure 43 - Signal Divergence in the Cortical Floor    270
Figure 44 - Cable equation for non-markless fibers    276
Figure 45 - Fire rate for signal propagation on non-markless fibers    277
Figure 46 - Linear and plane divergence grating in comparison    278
Figure 47 - Planar divergence grid with four input neurons    278
Figure 48 Principle representation No. 1 Excitation function    289
Figure 49- Principle diagram no. 2 Excitation function    289
Figure 50- Principle representation no. 3 Excitation function    290
Figure 51- Principle diagram no. 4 Excitation function    290
Figure 52- Principle representation no. 5 Excitation function    290
Figure 53- Principle representation no. 6 Excitation function    290
Figure 54 - Great Size Diagram in Polar Coordinates    293
Figure 55 - Linear and plane divergence grating in comparison    295
Figure 56 - Plane Convergence Grid in the Cartesian Coordinate System    296
Figure 57 - Coding of the direction of motion by neuron populations    299
Figure 58 - Chord length on the circle    304
Figure 59 - Chord Length and Center Distance    304
Figure 60 - Calculating the chord length on a circle    305
Figure 61 - Chord length calculation for a shifted receptive field    306
Figure 62 - Arrangement of four visual ganglion cells    307
Figure 63- Radius vectors to a neuron at point P(x,y)    309
Figure 64 - The Angle Dependence of the Term T2    313
Figure 65 - Display of the angle seen from the side    314
Figure 66 - Viewing the angle from above    314
Figure 67 - The influence of r on the directional selectivity    315
Figure 68 - The influence of r    315
Figure 69 - Orientation Columns for Large r    316
Figure 70 - Orientation columns with large r    316
Figure 71- Signal divergence in the olfactory cortex    320
Figure 72 - Basic circuit of the limbic system according to Malczan    327
Figure 73- Signal inversion in the basal ganglia to generate a time-sensitive differential image in the thalamus VL    341
Figure 74- Divergence and convergence in the basal ganglia system    343
Figure 75 - Superposition of the excitations in a color triangle    357
Figure 76 - Neural color triangle in the olivar nucleus    358

Monograph of Dr. rer. nat. Andreas Heinrich Malczan